

Home

Search Collections Journals About Contact us My IOPscience

Spectroscopic properties and simulation of the energy level schemes of Nd^{3+} and Pr^{3+} ions in rare earth tellurium oxides

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1992 J. Phys.: Condens. Matter 4 2721 (http://iopscience.iop.org/0953-8984/4/10/032)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.159 The article was downloaded on 12/05/2010 at 11:31

Please note that terms and conditions apply.

Spectroscopic properties and simulation of the energy level schemes of Nd³⁺ and Pr³⁺ ions in rare earth tellurium oxides

C Cascales[†], E Antic-Fidancev, M Lemaitre-Blaise and P Porcher Laboratoire des Eléments de Transition dans les Solides, UPR associée au CNRS 210, 1, place Aristide Briand, F-92195 Meudon-Bellevue, France

Received 14 October 1991

Abstract. Absorption and emission measurements at liquid-helium temperature, liquidnitrogen temperature and room temperature have been performed on monoclinic RE₂Te₄O₁₁ (RE = Nd³⁺, Pr³⁺), on rare-earth tellurium oxides and on Pr-doped Gd₂Te₄O₁₁ samples, respectively. The rare earth occupies a single crystallographic position with a low point symmetry C₁. The spectra were analysed according to the crystal-field theory. From the experimental data, nearly complete energy level schemes of the Pr³⁺ and Nd³⁺, on the 4f² and 4f³ configurations, were derived. Very good correlation was obtained between the experimental and simulated energy level schemes, for the approximate C_{2v} and/or C_s site symmetries. The crystal-field parameters vary smoothly with the atomic number of the rare earth, when compared with those determined previously for Eu³⁺ in the same matrix.

1. Introduction

Although the rare-earth tellurates have been known for many years, the structure of compounds with $RE_2Te_4O_{11}$ stoichiometry has been described only recently [1]. This new host offers a good opportunity for a systematic study of the spectroscopic properties of the trivalent lanthanide ions, for several reasons: first, the $RE_2Te_4O_{11}$ structure contains only one crystallographic rare-earth site (with very low C_1 point symmetry, however); second, the compounds are isomorphic through the rare-earth series; finally, oxides with a lone pair of electrons, such as Sn(II), Sb(III) or Te(IV), possess important properties as luminescence activators [2].

A preliminary study of the optical properties of the europium tellurate $Eu_2Te_4O_{11}$ [3] emphasized the high quality of the spectroscopic data: many electronic transitions from different emitting levels, showing that the emission from upper excited levels is not quenched and narrow lines owing to a good crystallinity. The simulation of the Eu^{3+} energy level scheme was carried out with a low RMS deviation in spite of the low point site symmetry. All these features encouraged us to conduct further data collection and the crystal-field analysis of the two most frequently analysed rare-earth ions, Pr^{3+} and Nd³⁺. The low-temperature absorption and luminescence spectra of those ions were '

† Permanent address: Instituto de Ciencia de Materiales, D, Consejo Superior de Investigaciónes Científicas, Serrano 113, E-28006 Madrid, Spain. studied and the results presented here. They were used to simulate the energy level schemes within the crystal-field theory, considering the free ion as well as the crystal-field parameters (CFPs).

2. Structural background

The family of the rare-earth tellurium oxides $RE_2Te_4O_{11}$ has been synthesized and characterized by x-ray diffraction techniques (4, 5). A recent study has reported the structure of Nd₂Te₄O₁₁ [1]. The compound belongs to the monoclinic system with C2/c (No 15) as the space group. The unit-cell parameters are a = 12.635 Å, b = 5.204 Å, c = 16.277 Å and $\beta = 106.02^{\circ}$ (Z = 4). The neodymium atom occupies only one atomic position of a C₁ point symmetry. The rare-earth atom is coordinated to eight oxygen atoms located at the corners of a distorted square antiprism. The NdO₈ polyhedra are linked together so that they form a two-dimensional subnetwork, with the $(Nd_2O_{10})_{x}$ composition. Another subnetwork of $(Te_8O_{21})_x$ two-dimensional sheets is found in the structure.

For the energy level simulation, the descending symmetry procedure by considering C_s or even C_{2v} as approximate point symmetry can be applied without difficulty.

3. Experimental details

3.1. Preparation of samples

Polycrystalline powder samples were prepared according to the method described previously [1]. Three samples were synthesized with praseodymium: the pure $Pr_2Te_4O_{11}$ and $Gd_2Te_4O_{11}$ activated by 1 and 5 mol.% Pr^{3+} . In the case of the Nd³⁺ ions, only the pure Nd₂Te₄O₁₁ compound was prepared, because no fluorescence measurements were attempted. The materials were tested by the x-ray diffraction technique, which showed only one phase.

3.2. Optical measurements

The absorption spectra of the pure praseodymium and neodymium compounds were obtained on a 3.4 m Jarrell-Ash grating spectrograph using photographic detection and on a Cary 2400 spectrometer. The measurements were carried out at 300, 77 and 4.2 K between 4000 and $30\,000$ cm⁻¹. The upper limit corresponds to the absorption edge of the matrix.

The fluorescence emission of the Pr^{3+} -doped samples were recorded at 300 and 77 K under various excitations: a 200 W UV mercury lamp equipped with a wide-band UV filter, the blue lines of a CW argon ion laser and/or a dye laser excitation accorded on selected crystal-field levels. The details of the experimental conditions can be found in [6] and [7].

4. Simulation of the energy level schemes

The spectroscopic properties of the rare-earth ions in crystalline matrices have received much attention since the early 1960s. This is due to the potential use of the rare-

earth compounds as laser materials and their interest in the modern technology as luminescence enhancers. They offer also an almost unique opportunity to compare the theory of the atomic spectra with high-precision experimental data, even when interactions of secondary importance are taken into account. The central-field approximation considers separately the Hamiltonians corresponding to the free-ion and crystalfield interactions, although the final purpose is to input them simultaneously in the secular determinant before diagonalization. According to the nomenclature of a rather recent review [8], the Hamiltonian used in the present study can be written as

$$\mathcal{H} = \mathcal{H}_0 - \sum_{k=0}^{k=3} E^k (nf, nf) e_k + \zeta_{4f} A_{SO} + \alpha L(L+1) + \beta G(G2) + \gamma G(R7) + \sum_{\substack{\lambda=2\\ \lambda\neq 5}}^{\lambda=8} T^{\lambda} t_{\lambda}$$

where E^k and ζ_{4t} are the Racah parameters and the spin-orbit coupling constant, and e_k and A_{SO} represent the angular parts of the electrostatic repulsion and spin-orbit coupling, respectively. For the configurations of two or more equivalent electrons the two-body interactions are considered with the Tree parameters α , β and γ associated with Casimir operators $G(G_2)$ and $G(R_7)$. For configurations having more than two electrons, non-negligible three-body interactions can also be introduced $(T^{\lambda}$ parameters). We do not consider here the spin-spin, spin-other-orbit and other relativistic interactions of minor importance which could be simulated through the $P^k(k =$ 2, 4, 6) and M_k (k = 0, 2, 4) integrals.

In the present case, seven free-ion parameters can describe adequately the $4f^2$ configuration of Pr^{3+} . Since the ${}^{1}S_{0}$ level is only observed by the means of two-photon spectroscopy [9], the γ -parameter was fixed to a standard value (table 1). For the $4f^{3}$ configuration of Nd³⁺ the T^{λ} parameters are introduced, too. For the same reasons as for Pr^{3+} , some parameters (γ , T^{2} and T^{8}) were fixed to values used in earlier studies [9–11].

The crystal-field calculations are usually carried out within the single-particle crystalfield theory [12, 13]. Following Wybourne's formalism the crystal-field Hamiltonian is expressed as a sum of products of spherical harmonics and CFPs:

$$H_{\rm cf} = \sum \{ B_q^k [C_q^k + (-1)^q C_q^k] + {\rm i} S_q^k [C_q^k - (-1)^q C_q^k] \}.$$

The number of the non-zero S_q^k and B_q^k CFPs depends on the crystallographic point site symmetry of the lanthanide ion. For the C₁ site symmetry there are 27 parameters which are non-realistic conditions for a simulation. Therefore, we consider the approximate C_s symmetry close to the true symmetry. However, in order to make the simulation carefully, we carry out the descending symmetry procedure in several steps.

(i) The first simulation is performed for the approximate C_{2v} symmetry; all S_q^k parameters of the crystal-field Hamiltonian vanish, which gives a total of nine CFPs.

(ii) The nine CFPs thus obtained are considered as starting parameters for the simulation for the C_s symmetry, which now gives six additional non-zero S_q^k parameters. The 15 CFPs are, however, reduced to 14 by a proper choice of the reference axis system, cancelling S_2^2 . This set is, in the present case, the most reasonable approach to the true symmetry.

The procedure to obtain the CFPs could be hardly facilitated if the CFP starting values had been estimated by a calculation from atomic positions. The most simplified model considers the effect of the electrostatic point charges (PCEM) localized at the crystallographic sites of the atoms on the network. Recent attempts have also included

		Pr		Nd	E	lu"
	C _{2v}	C,	C _{2v}	C,	C _{zv}	C,
E ₀	5369(2)	5381(2)	12958(1)	12964(1)	到到	l a di
Ê	4417(2)	4413(2)	4932.4(8)	4932.7(7)		
E,	22.09(2)	22.16(2)	23.37(2)	23.34(1)		
E ₃	459.4(2)	459.6(1)	480.94(9)	480.94(9)		
α	21.74(7)	22.16(6)	20.32(4)	20.41(4)		
β	-591(2)	-613(2)	-611(1)	-619(1)		
γ	[1540]	[1540]	[750]	[750]		
ζ	746.2(9)	746.4(8)	873.0(7)	873.5(6)		
T^2	1,		[294.4]	[294.4]		
T ³			32(2)	32(2)		
T*			. 91(3)	91(2)		
T ⁶			-248(6)	-248(6)		
\hat{T}^{7}			305(7)	302(6)		
T ⁸			[222]	[222]		
B2	283(14)	212(13)	416(19)	354(20)	235(23)	226(23)
B2	-107(12)	-57(10)	-191(12)	-202(14)	-187(16)	-168(17)
B	1717(28)	1733(23)	1165(34)	1068(34)	1327(51)	1346(47)
B	756(20)	889(18)	744(27)	650(31)	563(34)	451(37)
St		165(45)	-	656(31)		423(40)
B	367(25)	74(40)	401(30)	367(37)	632(39)	430(40)
St	<u> </u>	-241(26)	`´	6(44)	`	402(62)
B	831(43)	616(41)	~144(45)	25(54)	-484(59)	-265(60)
B ⁶	83(38)	99(36)	238(38)	165(46)	536(42)	472(47)
59		45(47)	_	-124(46)	<u> </u>	-23(40)
B	-734(29)	-172(40)	-522(31)	-454(32)	-615(40)	-648(53)
S		710(29)	_ ``	341(40)	· · · · · ·	100(44)
B	-482(40)	-273(41)	-332(30)	-232(35)	-485(38)	-379(36)
<i>S</i> [°]		561(37)	· · ·	136(65)	_``	153(103)
Levels	52	52	103	103	23	23
σ	22.4	15.4	25.8 21.8	^b 22.7 17.8 ^b	12.1	9.7
Residue	18086	7318	55240 39516 ^b	40130 24578 ^b	2041	844

Table 1. Free-ion and crystal-field parameters for $RE_2Te_4O_{11}(RE = Pr, Nd, Eu)$. The values in square brackets indicate parameters not varied. The values in parentheses are the estimated standard deviations. Units in cm⁻¹.

* See [3].

^b Values obtained with U⁴/₄ reduced tables (see text).

dipolar and quadrupolar contributions [14–19]. A more pragmatic approach was successfully applied for various compounds of scheelite-type structure [20]. Accordingly we carried out calculations by using this 'three-parameter method', considering an effective charge for oxygen and tellurium ions [20, 21]. Unfortunately, these CFPs are too far from the experimental result. This is probably a consequence of the existence of covalent tellurium oxygen complex groups for which the ionic effective charge has no real significance. Finally, the best method is to consider the CFPs as phenomenological parameters to be derived from spectroscopic data.

The phenomenological CFPs of the trivalent europium are a convenient set of starting values for crystal-field calculations [3, 6]. Since the ground ⁷F septet of the 4f⁶ con-

Figure 1. Comparison of part of the absorption spectra of $Pr_2Te_4O_{11}$ at 77 and 4.2 K.

figuration is well isolated from the rest of the configuration and is the only one of that multiplicity, an accurate simulation of the crystal-field effect is allowed by considering only the strongly reduced ${}^{7}F_{JM}$ basis, i.e. 49 $|SLJM_{J}\rangle$ states. In addition CFPs should vary smoothly in an isostructural series. All simulations are performed by the FORTRAN computer programs REEL and IMAGE [22].

5. Results and discussion

5.1. $Pr_2Te_4O_{11}$ and $Gd_2Te_4O_{11}$: Pr

All observed transitions in the absorption spectrum of $Pr_2Te_4O_{11}$ are sharp and well resolved (figure 1). The J-manifolds of $Pr_2Te_4O_{11}$ are split in the maximum number of $J + \frac{1}{2}$ Stark components (table 2). Absorption spectra at 4.2 K of pure $Pr_2Te_4O_{11}$ show only one line corresponding to the ${}^{3}H_{4} \rightarrow {}^{3}P_{0}$ transition; at liquid-helium temperature, only the lowest Stark level of the ground level is thermally populated. The existence of only one crystallographic point site occupied by the rare earth is thus confirmed. The lack of selection rules for electric and magnetic dipole transitions for the C₁ symmetry allows one to draw an almost full sequence for ${}^{1}D_2$, ${}^{3}P_{0,1,2}$ levels and some Stark components of the ${}^{1}I_6$ singlet.

The luminescence spectra show that at 77 K the ${}^{3}P_{0}$ is the main emitting level, and almost all possible transitions between Stark levels can be observed (figure 2). The fluorescence emission from ${}^{1}D_{2}$ has a lower intensity and not all transitions allowed are observed.

A scheme of 52 energy levels was considered in both simulations with the C_{2v} and C_s point symmetries. The simulations yielded energy level schemes in good agreement with

C Cascales et al 2726

			Energy level (cn	ı⁻¹)	
	<u> </u>		Ca	lculated	1
State	Experimental	C _{2v}	C2v(experimental-calculated)	C,	Cs(experimental-calculated)
'H,	0	-9	9	0 19	9 9
	90	117	-27	91	-1
	147	165	-18	143	4
	250	213	37	234	16
	352	341	11	358	-6
	437	464	-27	445	-8
		407		486	-
	528	510	19	525	-7
	528	677	17	535	-7 -2
	620	160	-17	022	-2
'nΗ,	2 212	2 206	6	2 2 1 5	-3
	2 224	2 229	-5	2 229	5
	2 261	2 280	-19	2 273	-12
	2 278	2 296	-18	2 290	-12
	2421	2 400	21	2 414	7
	2 439	2 442	-2	2 433	6
	2 493	2 487	6	2 484	9
	2 541	2 505	36	2 521	20
		2 600	·	2 599	
	2 645	2 636	9	2 631	14
	2.685	2 677	8	2 678	7
эн.	4 307	4 3 1 4	-7	4 303	4
0	4 320	4 326	-6	4 335	-15
	4 362	4 364	-2	4 365	-3
	4 385	4 373	12	4 377	8
		4 444		4 476	
	4 540	4 550	-10	4 545	-5
	4 587	4 6 3 1	-44	4 600	-13
	4 679	4 659	20	4 663	16
		4 729		4 702	
	_	4 800		4 822	_
		4 858		4 844	
	4 923	4 904	19	4 930	-7
		4 941		4 937	
	5 092	5 071	51	5 000	Ō
* 2	5 150	5122	17	J U90 E 166	-0
	5 161	5 100	17. —10	3 100 E 104	-))5
	5 105	5 224	-19	061 C	-23
	5 242	5 224	- 22	2 199	- 14
	J 242	5 250	12	5 220	ZZ
F,	6 448	6 436	12 .	6 440	8
-	6 486	6 457	29	6 476	10
	6 507	6 491	16	6 492	15
	6 526	6 552	-26	6 534	-8
	6 549	6 561	-12	6 5 4 7	2
	<u> </u>	6 571	_	6 577	<u> </u>
	_	6 656		6 657	

Table 2. Observed and calculated energy levels for $Pr_2Te_4O_{11}$ and $Gd_2Te_4O_{11}$: Pr_2 .

unter a state a 11 11

- -- --

			Energy level (cm	1 ⁻¹)	
State	, <u></u>		Ca	lculated	
25+1L,	Experimental	C _{2v}	C2v(experimental-calculated)	C _s	Cs(experimental-calculated)
³ F4		6 815		6 776	_
	6 850	6 852	-2	6 818	-2
		6 870		6 827	
	6 896	6 875	21	6 870	26
	6 931	6916	15	6 937	-6
	7 006	7001	5	7 016	-10
	7 060	7 094	-34	7 091	-31
	7 09 6	7 096	0	7 097	-1
	7 124	7 135	-11	7 125	-1
¹ D ₂	16 477	16 479	-2	16 483	-6
	16 778	16775	3	16 779	-1
	16 840	16 856	-16	16 837	3
	16 958	16965	-7	16 966	-8
	17 120	17 098	22	17 107	13
³ P ₀	20 525	20 509	16	20 515	10
1I6	20 965	20 980	-15	20 979	-14
³ P,	21 049	21 035	14	21 035	14
	21 141	21 143	-2	21 147	-6
	21 200	21 214	-14	21 204	-4

Table 2 continued

the experimental data (table 2). The simulation was undoubtedly improved when the S_q^k -parameters were introduced since the RMS standard deviation as well as the residue decreased significantly (table 1).

5.2. Nd₂Te₄O₁₁

Transitions in the absorption spectrum of Nd^{3+} at liquid-helium temperature originate from the lowest Stark component of the ${}^{4}I_{9/2}$ ground-state manifold. Figure 3 shows an example of this very well resolved spectrum, where lines are unambiguously attributed. The energy positions of the ${}^{4}I_{9/2}$ crystal-field components have been established from the transition to ${}^{2}P_{1/2}$ at 300 K. One could establish rapidly a quite complete energy level scheme of 103 of a total of 182 from absorption measurements. Table 3 gives the experimental Stark components of $Nd_{2}Te_{4}O_{11}$ up to 30 000 cm⁻¹. The relatively large number of levels offers a good opportunity for a free-ion and crystal-field calculation in spite of the low point symmetry. As for Pr^{3+} , the simulations were performed for the C_{2v} and the C_{s} symmetries. Despite the number of parameters the C_{s} simulation yields a better reproduction of the experimental energy level scheme, with a lower RMS standard deviation and without large individual discrepancies between experimental and calculated values for most levels. However, an exception is observed in the simulation of the ${}^{2}H_{11/2}$ level splitting. This situation is very common for the Nd^{3+} configuration [23].

			Energy level (cm ⁻¹)		
l evel			Ü	alculated	
ربال ۲۱+۶۳	Experimental	C ₃	C2v(espetimental-calculated)	Ű	Cs(expenmental-caseulated)
41 ₉₁₂	0	5		-2	2
-	95	117	-22	111	19 1
	192	202	-10	203	-11
	254	252	7	253	
	347	383	- 36	379	-32
41 13/2	3 905	3 892	13	3 892	13
	3 943	3911	32	3 921	22
	4 001	4 0.04	-3	3 997	4
	4 042	4 050	\$ 1	4 030	. 11
	4 089	4 086	÷	4 087	ţ 4
	4 136	4119	17	4 122	14
	4 161	4138	23	4 149	12
$^{+1}_{15/2}$	5 855	5 857	7 i	5851	4
•	5 900	5 879	21	5 892	. 00
··.	5 995	5.993	2	5 993	2
• •	6 059	6 084	-25	6,068	0
. ,	6 158	6166	80 I	6 161	- (1
	6 228	6197	31	6212	16
	6 240	6 2 5 0	- 10	6 235	, v
	6 294	6283	11	6 304	-10
${}^{4}F_{3R}$	11 381	11 364	17	11 366	15
	11 470	11 443	27	11 440	30
${}^{4}\mathrm{F}_{\mathrm{S/2}}$	12 392	12 375	17	12 378	14
	12 475	12 441	¥	12 434	41
	12 507	12 490	17	12 503	াব

Table 3. Observed and calculated energy levels for $Nd_3Te_4O_{11}$.

2728

- 13 12 -21	- 23 - 9 - 3	- 15 12	-18	-21 -22	-29 15	-74 -22 ^a -67 -24 ^a -20 5 ^a 8 0 ^a 55 -2 ^a 55 -3 ^a	-22 3 23	23 6	21 26	12 25 24 24
12 <i>577</i> 12 602 12 636 12 709	13 369 13 415 13 450	13 468 13 478	13 524	14 629 14 661	14 091 14 792 14 807	IS 888 IS 836" IS 905 IS 862" IS 911 IS 886" IS 925 IS 933" IS 931 IS 988" IS 949 I6 007"	16 927 17 031 17 116	17 196 17 229	17 260 17 348	18 846 18 883 18 954 18 992
- 14 11 - 25	- 19 - 4 - 2	- 13 15	~- 19	- 22 	123 19	-73 -27" -65 -26" -25 -25" 11 6" 58 5" 55 1"	-30 2 27	- 40 - 12	- 2 64	19 - 5 13
12 578 12 603 12 634 12 713	13 365 13 410 13 449	13 466 13 475	13 525	14 630 14 657 14 601	14 786 14 786 14 803	15 887 15 841 ^a 15 903 15 864 ^a 15 916 15 888 ^a 15 922 15 927 ^a 15 928 15 981 ^a 15 949 16 003 ^a	16 935 17 032 17 112	17 213 17 235	17 283 17 310	18 839 18 913 18 945 19 003
12 564 12 614 12 637 12 688	13 346 13 406 13 447	13 453 13 490	13 506	14 608 14 639 14 686	14 763 14 822	15 814 15 838 15 891 15 933 15 986 15 986	16 905 17 034 17 139	17 173 17 223	17 281 17 374	18 858 18 908 18 946 19 016
2H9/2	4F _{1/2}	⁴ S _{3/2}	${}^{4}\mathrm{F}_{\eta_{2}}$	4F922		2 H $_{10R}$	⁴ G _{5/2}	⁴ G _{1/2}	² G _{7/2}	⁴ G _{1/2}

Table 3 contin	pənı				
			Energy level (cm ⁻¹)		
			Cal	culated	
Level ²⁵⁺¹ L ₇	Experimental	C ₂ v	C2v (experimental-calculated)	Č	Cs(experimental-calculated)
² K _{13/2}	19 249 19 319	19217 19334	32 - 15	19 232 19 319	17 0
+0 _{9/2}	19 381 19 409 19 434 19 449 19 461	19 387 19 398 19 434 19 448 19 452	9 - 1 0 - 6 2	19 389 19 409 19 430 19 456 19 475	
² K _{13/2}	19 555 19 623 19 706 19 778	19 553 19 602 19 657 19 727 19 768	221 21 10	19 543 19 610 19 660 19 713 19 771	12 13 17 12 12 12
² G _{9/2}	20 878 20 907 20 959 20 977	20 856 20 866 20 916 20 969 20 014	22 41 - 10 37	20 855 20 883 20 918 20 955 20 986	2 2 2 2 4 0 9 4 0
th Ω _t	21 083 21 130	21 086 21 113	-3 17	21 089 21 120	-6 10
4G ₁₁₂	21 194 21 233	21 233 21 264	39 31	21 219 21 269	-25 -36
² K15/2	21 3 32 21 395	21 335 21 360	-3 35	21 325 21 376	7 19
⁴ G _{11/2}	21 411 21 460	21415 21482	4 ⁻	21 402 21 499	9 - 39

C Cascales et al

² K _{15/2}	21 526 21 609	21 522 21 605	4 4	21 537 21 616	-11 7
⁴ G _{11/2}	21 639 21 652 21 687	21 631 21 662 21 678	- 10 9	21 633 21 665 21 678	6 - 13 9
²K _{15/2}	21 735 21 783	21 732 21 743	3 40	21 716 21 765	19 18
² P _{1/2}	23 147	23 134	13	23 133	14
²D _{\$/2}	23 640 23 721 23 791	23 628 23 721 23 807	12 0 ~ 16	23 631 23 727 23 798	6 5
² P _{3/2}	26 032 26 103	26 019 26 110	13 -7	26 019 26 105	13 2
$^{4}D_{3/2}$	27 784 27 840	27 790 27 853	-6 -13	27 795 27 832	-11 8
⁴ D _{5/2}	— 28 050 28 243	27 926 27 987 28 238	63 5	27 881 28 027 28 232	1 33 -
${}^{\dagger}D_{1/2}$	28 421	28 444	-23	28 437	-16
2/11/Z	29 125 29 244 29 320	29 142 29 265 29 319	-17 -21 1	29 132 29 245 29 333	-7 -13
^a Encrgy level v	alues obtained with $U^4/4$	reduced tables (see text).			

Figure 2. Part of the fluorescence spectrum for $Gd_2Te_4O_{11}$: Pr^{3+} at 4.2 K and $\lambda_e = 457.9$ nm (argon laser).

It has been recently argued [24] that a non-negligible mixing of that level with some states of the 4f² 5d excited configuration occurs through the *odd* terms in the expansion of the crystal-field Hamiltonian, also taken into account in the phenomenological simulation of the electric dipole transition intensities [25]. This assumption is difficult to handle because of the larger secular determinant. A more empirical method to ameliorate the simulation is to divide the $\langle {}^{2}H(1)_{11/2} | U^{4} | {}^{2}H(1)_{11/2} \rangle$ reduced matrix element by 4 [23]. This process improves the simulation, almost without changing the CFPs values, and reduces the residue $(\Sigma | E_{exp} - E_{calc} |^{2})$ as well as the RMS standard deviation. The results are given in tables 1 and 3.

Table 1 also compares the phenomenological CFPs for Pr^{3+} , Nd^{3+} and Eu^{3+} . Some of the Eu^{3+} CFPs are slightly different from those reported previously [3]. The set of new values reported here for this ion is obtained from a new attempt at simulation using starting values extrapolated from Pr^{3+} and Nd^{3+} . This is really a self-consistent method because the older set of Eu^{3+} CFPs has been considered as starting values for Pr^{3+} and Nd^{3+} . Anyway, the difference between [3] and here emphasizes the great difficulty in simulating an energy level scheme when the number of CFPs is large, i.e. when the point symmetry is low and when there are neither starting values calculated from *a priori* models for these parameters, nor experimental values obtained under polarized light.

Figure 3. Part of the absorption spectrum of Nd₂Te₄O₁₁ at 4.2 K for various transitions: (a) ${}^{4}I_{9/2} \rightarrow {}^{2}P_{1/2}$; (b) ${}^{4}I_{9/2} \rightarrow {}^{4}G_{1/2}$, ${}^{2}G_{9/2}$; (c) ${}^{4}I_{9/2} \rightarrow {}^{4}G_{9/2}$, ${}^{2}K_{13/2}$, ${}^{4}G_{7/2}$; (d) ${}^{4}I_{9/2} \rightarrow {}^{2}G_{7/2}$, ${}^{4}G_{5/2}$; (e) ${}^{4}I_{9/2} \rightarrow {}^{2}H_{11/2}$; (f) ${}^{4}I_{9/2} \rightarrow {}^{4}F_{9/2}$.

It seems that the only and relatively secure way for operating such a simulation is to perform simultaneous simulations on various electronic configurations. $4f^2$, $4f^3$ and $4f^6$ configurations of trivalent Pr, Nd and Eu ions are the most appropriate cases. The simulation will be considered as good when the sets of CFPs only vary smoothly along an isostructural matrix series.

Acknowledgments

We express our gratitude to Dr A Castro for providing the samples, and to Dr J Hölsä for various helpful discussions. One of the authors (CC) acknowledges the fellowship from the Consejo Superior de Investigaciónes Científicas, Spain.

References

- [1] Castro A, Enjalbert R, Lloyd D, Rasines I and Galy J 1990 J. Solid State Chem. 85 100
- [2] Blasse G 1983 Rev. Inorg. Chem. 5 328

2734 C Cascales et al

- [3] Cascales C, Antic-Fidancev E, Lemaitre-Blaise M and Porcher P 1991 J. Alloys and Compounds at press
- [4] Redman M J, Binnie W P and Carter J R 1968 J. Less-Common Met. 16 407
- [5] Parada C, Alonso J A and Rasines I 1986 Inorg. Chim. Acta 111 197
- [6] Cascales C, Antic-Fidancev E, Lemaitre-Blaise M and Porcher P 1990 J. Solid State Chem. 89 118
- [7] Antic-Fidancev E, Lemaitre-Blaise M, Krupa J C and Porcher P 1991 Eur. J. Solid State Inorg. Chem. 28 81
- [8] Carnall W T, Goodman G L, Rajnak K and Rana R S 1989 J. Chem. Phys. 90 3443
- [9] Antic-Fidancev E, Lemaitre-Blaise M, Beaury L, Teste de Sagey G and Caro P 1980 J. Chem. Phys. 73 4613
- [10] Caro P. Svoronos D R. Antic-Fidancev E and Quarton M 1977 J. Chem. Phys. 66 5284
- [11] DaGama A A S, De Sa G F, Porcher P and Caro P 1981 J. Chem. Phys. 75 2583
- [12] Wybourne B G 1965 Spectroscopic Properties of Rare Earths (New York: Wiley)
- [13] Hüfner S 1978 Optical Spectra of Transparent Rare Earth Compounds (New York: Academic)
- [14] Faucher M and Garcia D 1982 Phys. Rev. B 262 5451
- [15] Morrison C A, Leavitt R P and Wortman D E 1980 J. Chem. Phys. 763 2580
- [16] Faulkner T R and Richarson F S 1980 Mol. Phys. 39 75
- [17] Faucher M, Dexpert-Ghys J and Caro P 1980 Phys. Rev. B 21 3689
- [18] Morrison C A 1976 Solid State Commun. 18 153
- [19] Newman D J 1971 Adv. Phys. 20 197
- [20] Leavitt R P, Morrison C A and Wortman D E 1975 Harry Diamond Laboratories (Adelphi, MA) Report HDL-TR-1673
- [21] Huang J 1983 PhD Thesis Université Pierre et Marie Curie, Paris
- [22] Porchet P 1989 Computer programs REEL and IMAGE for simulation of d" and f" configurations involving real and complex crystal field parameters unpublished
- [23] Faucher M, Garcia D and Porcher P 1989 Ct. R. Acad. Sci., Paris 308 Ser. II 603
- [24] Garcia D and Faucher M 1989 J. Chem. Phys. 90 5280
- [25] Judd B R 1962 Phys. Rev. 127 750